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ABSTRACT 

Optical coherence tomography (OCT) is an emerging biomedical imaging modality that 

interferometrically measures the depth-resolved back-scattered light from a sample. The 

high resolution subsurface imaging capabilities of OCT can potentially provide valuable 

diagnostic feedback about tissue morphology during intra-operative applications of OCT. 

However, the intra-operative use of OCT is hindered by the lack of suitable sample 

scanning mechanisms and the difficulty in real-time interpretation of OCT data.  

Screening or diagnostic procedures typically require high resolution imaging over 

a large field-of-view. The current scanning mechanisms, which are predominantly based 

on mechanically scanning the OCT beam over the specimen, have a limited scan range 

and lack the required flexibility for large field-of-view imaging. Moreover, OCT, being a 

high resolution imaging modality, requires a very high data acquisition rate and would 

generate huge amounts of data if used to image over a large surgical field. These 

extremely high data rates would make the real-time interpretation of OCT data a 

challenge, especially in the highly demanding operating room environment where the 

surgeon has to simultaneously keep track of a number of parameters. In this thesis, 

algorithmic techniques are proposed that may be helpful in overcoming some of these 

limitations. 

Image acquisition over a large field-of-view with flexible scan geometry would 

require a manually scanned hand-held probe. This thesis describes a cross-correlation 

based image acquisition technique that may be used for image formation by 

compensating for the variable scan velocity encountered while manually scanning the 

probe. This thesis also describes an approach for multi-sensory representation of OCT 
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data by converting OCT data and images into sound. Audio rendering of OCT data when 

used in conjunction with the visual display may facilitate rapid interpretation of OCT 

data as the human auditory sense can detect more rapid transitions in the data than the 

visual sense and hence may be used for identifying suspected regions in real-time, which 

can subsequently be monitored in high resolution using the visual display. 
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CHAPTER 1 INTRODUCTION 

One of the most significant goals of surgical guidance is to provide assistance for the 

accurate placement and positioning of surgical tools to target an area of interest for 

various screening, diagnostic or therapeutic purposes. This is typically done by co-

registering the pre-operative acquired images with the morphology of the tissue during a 

procedure [1]. Recently, imaging modalities such as fluoroscopy [2], x-ray computer 

tomography (CT) [3, 4], ultrasound imaging [5-7] and magnetic resonance imaging 

(MRI) [8, 9] have been integrated into the surgical suite to provide real-time intra-

operative feedback during surgical procedures. Each of these modalities has its own 

advantages and limitations. While CT provides good anatomical information, the lack of 

sufficient contrast between soft tissues and the ionizing radiation employed during 

imaging limit its use in the operating room. MRI systems have been successfully 

employed for procedures such as needle placement and real-time monitoring of therapies 

such as cyro-surgery and thermal ablation [10]. However, MRI is very expensive, has 

relatively low resolution, and requires high precautionary measures which limit its 

widespread intra-operative usage.  Ultrasound has been extensively studied for intra-

operative imaging applications because of its simplicity and low cost. However, the 

contact required between the transducer and tissue and low resolution of ultrasound 

images make it unsuitable for many applications.  

Optical imaging techniques such as visual endoscopy, fluorescence, multiphoton, 

confocal microscopy and optical coherence tomography (OCT) have an order of 

magnitude higher spatial resolution compared to other imaging techniques, have high 

sensitivity, are non-contact, non-ionizing and relatively inexpensive. Among these 
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techniques, OCT in particular is in a unique position to intra-operatively provide real-

time, high-resolution, sub-surface imaging data to guide certain surgical procedures [11]. 

OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, 

including ophthalmology, cardiology, oncology, dermatology and dentistry [12]. 

However, the limited penetration depth of OCT limits its non-invasive applications to the 

easily accessible parts of the human body such as the skin, oral or auditory cavities, or the 

eye. To access deeper regions within the body, OCT imaging is coupled with needle 

probes, catheters or endoscopes [13]. OCT may find its greatest application in minimally 

invasive surgical procedures where high resolution sub-surface images may typically be 

required for detection of tumor margins [14], resection of abnormal tissue, and guidance 

of needle biopsies, among many others [15].  

The intra-operative use of OCT presents itself with numerous challenges. One of 

these is the requirement to image over large fields-of-view in real-time such as for 

screening or surgical guidance. A multi-modal approach can be employed, where a 

relatively low resolution imaging technique such as fluorescence imaging, MRI, 

PET/SPECT and ultrasound imaging is used to screen a large field-of-view and identify a 

suspicious region or area of interest for subsequent high resolution imaging using OCT 

over a relatively small field-of-view. This approach will require techniques to co-register 

the multi-modal image data from various modalities, which is very challenging and an 

active area of research [16]. However, little work has been done in combining optical 

imaging methods with other imaging modalities [17-19].   

Another approach could be to utilize the high speed imaging capabilities of OCT 

for large field-of-view imaging. The introduction of spectral-domain OCT (SD-OCT) has 
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significantly improved the speed of data acquisition in OCT systems with scan rates of up 

to 25-40 kHz available in commercial OCT systems. Fast swept-source or spectrometer-

based OCT systems can even extend the A-scan rates to several hundreds of kHz 

enabling the acquisition of high-speed real-time volumetric OCT data. Scan rates of up to 

240 axial lines per second have been demonstrated using Fourier-domain-mode-locking 

(FDML) lasers [20, 21]. By utilizing the high scanning rate of these systems, a large 

field-of-view can be rapidly scanned in real-time, generating high-resolution OCT 

images. However, some of the potential problems associated with this brute force large 

field-of-view OCT imaging are the limited scan range of conventional OCT sample 

scanning mechanisms and the subsequent real-time interpretation of the massive amount 

of OCT data that would be generated. The focus of this thesis is to address some of these 

difficulties by proposing new techniques for OCT data acquisition and interpretation. 

The organization of this chapter is as follows: Spectral-domain OCT is briefly 

explained in section 1.1, followed by an introduction to the current sample scanning 

mechanisms used for OCT imaging in section 1.2. An alternate way to represent OCT 

data in the form of non-speech audio signals is introduced in section 1.3. Finally, the 

outline of the rest of the thesis is described in section 1.4. 

1.1 Spectral-domain OCT  

Optical coherence tomography (OCT), first introduced in 1991, has found numerous 

applications within the domain of biomedical imaging, materials research, non-

destructive testing and optical metrology [22, 23]. A block diagram of a typical spectral-

domain OCT system is shown in Figure 1.1. Light from a broadband light source is split 

by a beam splitter into two arms, i.e. sample arm and a reference arm. The combination 
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of the light from the reference arm and back-scattered light from the internal tissue 

microstructures in the sample gives rise to an interference pattern. The interference 

pattern is spectrally decomposed by the grating and is focused onto an array of photo-

detectors for detection. The Fourier transform of the spectrally decomposed interference 

pattern gives the depth information which constitutes a single A-scan in an OCT image. 

Two- or three-dimensional OCT images are formed by scanning the laser beam over the 

sample and appending the acquired A-scans in synchronization with the position of the 

beam.

Transverse 
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Arm
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Arm
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Splitter
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Camera

Lens

Fixed Mirror
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Figure 1.1: Spectral-domain optical coherence tomography (SD-OCT) system. 

OCT relies on the intrinsic variations in the optical properties of tissues to 

generate contrast. In most of the currently used OCT systems, the differences in the 

spatial variation of the backscattering properties of various tissue microstructures 
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generate the contrast. However, any physical property that can change the amplitude, 

phase or polarization of the incident beam can be used to form images [24]. Various 

extrinsic contrast agents such as nanoparticles or microspheres have also been used to 

generate molecular specific contrast in OCT images, which has significantly increased 

the range of possible applications for OCT [21, 25].  

In OCT, a broadband source having a low coherence length is used to obtain 

higher axial resolution and better contrast. The spectral range of the source is selected 

based on the penetration of light within the tissue which is dependent on both the 

absorption and the scattering properties of tissues. Near-infrared (700-1400 nm) light is 

used in the so-called 'biological window' where scattering dominates the light-tissue 

interaction. Light of wavelengths below 700 nm will be absorbed by melanin and 

hemoglobin, while wavelengths greater than 1400 nm will be strongly absorbed by the 

water within the tissues. In general, within this window, the longer the wavelength used, 

the greater the penetration depth due to the reduced scattering of light within the tissue 

[24]. 

In OCT the axial resolution and the transverse resolution are independent of each 

other. The axial resolution of an OCT system is determined by the full-width-half- 

maximum (FWHM) of the coherence length of the source. The coherence length is the 

width of the autocorrelation function G(τ) of the beam which is the related to the power 

spectrum S(k) of the source by the Fourier transform relationship. 

        ( ) [ ( )]G S k               (1.1)         

where [ ]   is the Fourier transform operator. For a source with a Gaussian spectral 

distribution, the coherence length lc is given by 
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where λo is the center wavelength and Δλ the bandwidth of the light source. Therefore a 

source with a larger bandwidth and shorter center wavelength will give a higher axial 

resolution in OCT. The transverse resolution in OCT depends upon the spot size of the 

OCT beam at the focus given by  
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where ωo is the radius of the beam at focus, f is the focal length of the lens and D is the 

spot size diameter of the beam at the objective lens. Using a higher numerical aperture 

lens could enhance the transverse resolution but would decrease the depth of focus of the 

OCT beam. The typical axial and transverse resolution in OCT is around 1-10 μm and 

10-20 μm respectively. The penetration depth in OCT is typically around 1-3 mm and is 

limited by both the multiple backscattering and the absorption of light within biological 

tissues. The maximum theoretical limit is determined by the following expression: 
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where N is the number of photo-detectors or number of pixels in a line scan CCD, and n 

is the average refractive index within the medium [12, 26]. 

1.2 Sample scanning mechanisms in OCT  

Scanning mechanisms discussed in this thesis refer to various techniques utilized to scan 

a focused OCT beam over the sample surface for the purpose of OCT image formation. 

Interferometrically detected back-scattered light from the sample constitutes a single A-

scan in OCT. A two- or three-dimensional OCT image is formed by the assembly of 
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sequentially acquired A-scans (a single A-scan is one column in an image) which need to 

be coordinated with the scanning of the beam over the sample.   

Currently used OCT scanners can be classified as bench-top, hand-held or 

endoscopic scanners. In terms of the scanning geometry employed, they are categorized 

as circumferential, deflecting and translational scanning [27]. Most of these are 

predominantly based on mechanically scanning the beam and typically utilize 

galvanometers, small electric motors, piezoelectric actuators, etc. Based on the 

mechanisms used for beam scanning, the scanning mechanisms can be broadly classified 

as mechanical-scanning mechanisms and manual-scanning mechanisms.  

1.2.1 Mechanical-scanning mechanisms 

Mechanical-scanning mechanisms are the most widely employed scanning solutions for 

OCT.  They have the advantage of great accuracy and the availability of a wide range of 

actuation mechanisms and devices. Mechanical-scanning mechanisms include techniques 

used in bench-top systems where the specimen is placed on a stage and image formation 

is done either by deflecting or translating the OCT beam over the specimen. Also 

included are circumferential and linear scanning techniques used in OCT based catheters 

or endoscopic devices. 

1.2.1.1 Bench-top based mechanical-scanning mechanisms 

Computer-controlled motion of galvanometer-mounted mirrors is widely used for 

scanning the specimen in bench-top systems. In this configuration, the tissue specimen is 

placed on a fixed stage and an OCT image is acquired by sequential acquisition of depth-

resolved A-scans synchronized with the lateral scanning of the beam.  However, the 
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limited angular range of the galvanometer (for a typical angular range of ±10
o
 the 

maximum scan range is approximately 2-3 cm) and the finite aperture of the objective 

lens (typically 1-2 cm) constrain the achievable lateral scan range. An alternative method 

to scan a wider area is to move the sample with uniform velocity with a motorized stage 

under a fixed OCT beam. This technique has the limitation of slow translation rate and 

inflexible scanning geometry. Although these stage-based scanning mechanisms provide 

excellent accuracy and are well suited for lab-based imaging of excised tissue samples, 

there is clearly a need for a more flexible scanning method for in vivo or intra-operative 

imaging applications.     

1.2.1.2 Mechanical-scanning mechanisms in catheter-endoscopes and hand-held 

imaging probes    

The limited penetration depth of OCT requires the incorporation of OCT beam delivery 

and scanning systems within various needle-based probes for imaging deep inside the 

tissue or OCT based catheters and endoscopes to allow intravascular imaging and 

imaging of hollow organs inside the human body. These devices are required to be of 

small size and diameter, and flexible enough to provide convenient access to tissues and 

organs.  

A wide variety of mechanical-scanning mechanisms have been employed within 

these devices. In catheter-endoscopes the actuating mechanisms may be either at the 

distal or the proximal end of the probe. Some of the scanning mechanisms reported 

include micro-motors for circumferential scanning [28] and MEMS-based scanning 

techniques for circumferential and linear scanning [29, 30]. Motor-driven mirror mounted 

galvanometric techniques and piezoelectric actuators [31] have been used for beam 

deflection in catheters and hand-held probes. Incorporation of motor-driven linear 
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translation of the optical assembly inside a hand-held probe has been reported [32]. 3-D 

imaging by combining the MEMS motor rotational scan and linear stage transversal 

movement in catheters has also been demonstrated [33]. In forward-imaging devices, 

paired-angle-rotation scanning (PARS) has been reported which enables a linear scan 

pattern in front of the probe tip by using two counter-rotating-angle polished gradient-

index (GRIN) lenses [34]. Although these scanning solutions provide good image quality 

and scan accuracy, the scan range is still limited and inflexible due to the limitations of 

the mechanical-scanning mechanisms. These mechanisms make the probe design 

complicated in addition to making the probes bulky and expensive. Mechanical-scanning 

mechanisms also frequently need to be customized for specific in vivo and intra-operative 

OCT imaging applications while still providing limited flexibility in choosing the 

scanning geometries.  

1.2.2 Manual-scanning techniques  

Due to the inherent limitations of mechanical-scanning mechanisms, many research 

groups have tried to devise alternate sample scanning techniques using hand-held probes. 

This is partly motivated by the availability of numerous position tracking devices and 

sensors for tracking surgical instruments in surgical-guidance applications. A simple 

hand-held, manual-scanning probe can be used to obtain OCT images of tissues and 

organs which might otherwise be inaccessible using standard mechanical-scanning 

probes. However, manually scanning a hand-held probe can cause a number of image 

artifacts due to variations in the scan velocity and orientation of the probe. Consequently, 

image formation with a manual-scanning probe requires a method to synchronize the 

acquired A-scans with the relative displacement between the sample and probe. 
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Based on the methodology to obtain positional information, the manual-scanning 

techniques have been divided into sensor-based and sensor-less approaches where the 

sensor-based technique requires an add-on sensor on the probe while the sensor-less 

approach utilizes the acquired data and properties of the imaging system to deduce 

positional information.   

1.2.2.1 Sensor-based manual-scanning probes 

As image-guided surgical procedures are becoming more popular, numerous companies 

are developing devices and sensors for position tracking of surgical instruments. A 

number of commercial products are available in the market. These systems attach 

reference markers to the probe, and sensors based on acoustic, electromagnetic or optical 

principles are commonly employed to spatially localize the instrument or device within 

the sensor‟s field-of-view [35]. To gain information of the position and the orientation of 

the probes, in general six degrees of freedom (DOF), i.e. spatial (x, y, z) co-ordinates and 

the rotational (raw, pith and yaw) co-ordinates, are required. 

In acoustic sensing, a sound emitting source is placed on to the device to be 

tracked, and a receiver is used to detect the emitted sounds. The distance is determined by 

either measuring the propagation time of the received sound wave or the phase-difference 

between the sent and received signal. Acoustical position trackers are not widely used as 

the variations in temperature, humidity and pressure of air significantly influence the 

propagation speed of sound and limit the accuracy of these sensors. Moreover, these 

sensors require a line of sight between the source and the detectors.  

Electromagnetic tracking can be based on either alternating current (AC) or direct 

current (DC) fields. An electromagnetic receiver is mounted on a probe or the instrument 
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to be tracked and placed within the AC or DC fields; the electric currents induced due to 

the variation of the position of the probe are then used to estimate the spatial location of 

the probe. Ferromagnetism and eddy currents, however, affect the accuracy of these 

devices. Moreover, magnetic-field-based sensing systems are highly susceptible to 

electromagnetic interference which limits their utility in the operating room environment 

[36].  

 Optical tracking systems can in general be divided into two main classes: passive 

tracking and active tracking. Active tracking systems are based on mounting optical 

emitters (typically IR LEDs) to the probe and tracking them using a camera or any other 

suitable sensor. These systems have the drawback that the optical emitters will require a 

power source of their own which will either have to be mounted on to the probe itself or 

supplied through wires. This makes the probe bulky and its use inconvenient. Passive 

tracking systems have also been reported, where instead of using light emitters, retro-

reflecting spheres or specific geometric patterns are attached to the probe and are 

subsequently recognized by optical sensing systems. Computation algorithms are then 

used to estimate the position and pose of specific markers [37]. At least three sensors are 

required to get the full position and orientation of the probe. Optical tracking systems are 

currently the most widely used systems. Optical tracking systems, like acoustic sensors, 

require a line of sight for operation; however, in general they are more accurate with 

studies showing that these systems have an accuracy and precision of around 0.5 mm 

[38].  

Other devices based on accelerometers and gyro-meters have also been used for 

tracking. Using a combination of technologies such as magnetic and optical sensing has 
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also been reported.  However, all sensor-based devices have to be carefully calibrated, 

typically have sub-millimeter spatial resolution, and the operating distances need to be 

within the range of the mounted sensor and the base unit.  

A distinction must be made between tracking surgical instruments inside the body 

and outside it. Most of the above mentioned techniques require that the instrument be 

placed outside the human body. In many cases it is very useful to track the position of 

instruments such as catheters, needles or endoscopes within the human body. Most often 

an imaging technique such as ultrasound, fluoroscopy or MRI is used for this purpose. As 

optical or acoustic sensing requires a line of sight, the only viable sensor-based tracking 

technology that can be used inside the human body is based on electromagnetic sensing. 

Many techniques have been reported which are based on placing small electromagnetic 

sensors at the tip of needles or catheters for real-time positional information inside the 

human body [39]. Typical accuracies reported for these systems are around sub-

millimeter level [40]. Some companies have reported sensor sizes of less than 1 mm in 

diameter that can fit into needles as small as 16 gauge [41, 42]. The only reported work 

for image formation with a sensor-based manually scanned probe in OCT is based on 

passive optical positional tracking with an accuracy of 6 m along two axes and 19 m 

along the third axis [43]. 

1.2.2.2 Sensor-less freehand scanning  

Most of the sensor-based technologies described above are utilized for tracking surgical 

instruments in image-guided procedures and not necessarily for image formation. Some 

of these have been used for image formation in 3D ultrasound. However, OCT, being a 

high resolution imaging modality where the typical transverse resolution is in the range 
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of 10-20 m, would require much more accuracy than what is currently commercially 

available with these sensor based techniques. Hence, there is a need for sensor-less based 

tracking. Position tracking without the use of an external position sensor can offer 

significant advantages. It would not only make the probe design simple, but give a more 

flexible scanning geometry and remove many of the constraints imposed by the position 

sensor. A sensor-less approach will require the positional information to be deduced by 

the acquired data or images. In this section we describe some motion estimation methods 

used in other imaging modalities.  

Sensor-less hand-held scanning has been studied extensively in ultrasound 

imaging. Some of the most common techniques used are based on speckle decorrelation.  

Speckle is a common phenomenon in coherent imaging systems, which arises from the 

random interference from the back-scattered light from objects that are within the 

resolution volume of the imaging system.  Speckle depends upon the distribution of the 

scatterers within the sample, the system parameters and the beam characteristics. Speckle 

decorrelation has been used in ultrasound for velocity estimation, elastography and 3D 

image formation with varying degree of success [44, 45]. Theoretically, these techniques 

only work for a fully developed speckle pattern. Most of the studies have come to the 

conclusion that speckle information alone would not be sufficient for accurate motion 

estimation as the speckle size and distribution are influenced by a number of parameters.  

Previous work in OCT has shown that OCT data can be used to obtain 

information about the displacements and velocity of the scatterers within the sample. For 

example, in optical coherence elastography (OCE) the decorrelation in the speckle pattern 

has been utilized to measure the stiffness of tissues [46] while in optical Doppler 
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tomography (ODT) the velocity of moving structures is obtained by utilizing the change 

in phase or frequency of the back-scattered signals. Techniques based on the cross-

correlation have been used for example in motion artifact correction [47] and phase 

stabilization [48] in OCT. However, no prior work has been done in image assembly of 

OCT images using the cross-correlation techniques. 

1.3 Multi-sensory data representation 

In most real-world situations, we rely on our multi-sensory input capabilities to obtain 

information about our immediate surroundings. The sets of information obtained from 

our different senses complement each other. It therefore makes sense to use the same 

multi-sensory capability to interpret the increasingly vast amounts of scientific data being 

generated with the availability of inexpensive hardware resources and computational 

power. A multi-sensory input may be valuable in those scenarios where our visual sense 

is busy with other tasks or where we require rapid data interpretation.    

An important component of an image-guided system is the way data is 

represented and conveyed to the user in the surgical field. Stereoscopic, virtual-reality 

and augmented-reality techniques have been used in surgical guidance applications [1]. In 

OCT, the traditional way is to represent the data in image form using a visual display. 

The tissue structure, morphology, and beam attenuation are encoded in the intensities of 

the back-scattered light which constitutes a single A-scan in OCT. These A-scans are 

assembled together to form a B-mode image and then displayed on the screen.  

 Often it is desirable to image over large fields-of-view in real-time such as for 

screening or surgical guidance. Given the high resolution capabilities of OCT and the 

desire to image over a large field-of-view, high data acquisition rates are required, which 
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would make the real-time interpretation of OCT data a challenge. In these scenarios a 

multi-sensory representation of OCT data may facilitate rapid interpretation. 

1.3.1 Sonification  

The process of converting data into non-speech audio signals or waveforms for the 

purpose of conveying information about the data is known as sonification. Sonification of 

scientific data can be a valuable extension to the traditional visual display of data. Some 

of the inherent advantages of audio representation of data include:   

 The complementary nature of sound data 

In many scenarios the information we obtain from our audio sense complements our 

visual sensory information.  

 Superior temporal resolution of the human auditory system 

The human auditory system has far superior temporal resolution compared to the human 

visual system. Auditory representation can make the perception of patterns and sudden 

changes in the data more easily noticeable.  

 Ability to monitor parallel streams 

The human auditory system has the ability to monitor many parallel streams together. 

These properties can be used to represent multi-modal and multi-dimensional data. 

 Faster processing of data 

Audio rendering of data is in general computationally much simpler than rendering 3D 

visualizations of the same data. 

 Localization of sound  

The ability of the human auditory system to localize sound has been used for warning 

alarms. 
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Auditory information has been utilized in a number of different instruments or 

devices, such as in Geiger counters, electrophysiological recordings, warning alarms, and 

representation of multi-dimensional and multi-modal data [49, 50].  Audio rendering of 

visual scenes and audio cues have been used as a navigational aid by the visually 

disabled. Sounds have been extensively used in human-computer interfaces (HCI) and as 

an extension to visualization of complex data. 

1.3.2 Sonification of biomedical data  

 Over the years, the complexity of biomedical data has increased tremendously. This calls 

for increasingly complex analysis and novel representation methods. Sophisticated 

methods to provide intra-operative information to the surgical team in real-time have 

been developed such as three-dimensional visualization, and virtual- and augmented-

reality systems.  

However, many of these systems have surprisingly made little use of the 

capabilities of the human auditory perception. Physicians have relied on auditory 

information for decades to diagnose illness or listen to body sounds as is evident from the 

ubiquitous use of the stethoscope in medical practice. Audio representation is well suited 

for scenarios in which data is being acquired continuously and the user is only interested 

in abnormal or aberrant values. In biomedical applications, sonification has been used for 

providing audio feedback for manual positioning of surgical instruments [51], surgical 

navigational systems, analysis of EEG signals from the brain [52], physiological 

monitoring, heart rate variability [53] and interpretation of image data [54] and texture 

[55]. Audio output has also been utilized in Doppler ultrasound [56] and Doppler OCT 

[57] .  
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1.3.3 Sonification of OCT data  

Auditory representation of OCT data may be more beneficial than the conventional visual 

display in many situations. This is especially true in the highly demanding operating 

room environment where the surgeon has to simultaneously keep track of a number of 

parameters. The addition of an audio channel can free the visual sense for other tasks. It 

is known that human auditory perception is very sensitive to slight changes in the 

temporal characteristics of sound and can detect even small changes in the frequency of a 

signal [58]. These properties can be exploited to provide a faster method of tissue 

classification and identification of morphological landmarks in time-sensitive image-

guided surgical procedures such as screening, tumor resection or needle biopsy, and may 

complement the visual representation of OCT data. Sonification may also find 

applications where non-image data is collected such as procedures which use forward 

sensing devices where only axial scan data is acquired [59, 60]. 

1.4 Thesis outline 

The main contribution of this thesis is the development of algorithmic techniques which 

would potentially make the adaptation of OCT imaging for intra-operative applications 

more feasible. An image acquisition technique for OCT is proposed that can enable 

manual-scanning of the sample at an extended scan range with flexible scan geometries.  

Techniques for sonification of OCT data are also described which when combined with 

the visual display of OCT data, may enable the utilization of our multi-sensory 

capabilities for rapid interpretation of OCT data.  

The organization of the remaining chapters of the thesis is as follows. Chapter 1 is 

followed by the description of the cross-correlation based image acquisition technique in 
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Chapter 2. Chapter 2 also includes image assembly results from different tissue samples 

and biological tissues by using a sensor-less manual-scanning mechanism. Audio 

representation of OCT images and data is described in Chapter 3, which is followed by 

conclusions and future work recommendation in the final chapter.  
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CHAPTER 2 CROSS-CORRELATION BASED IMAGE 

ASSEMBLY 

This chapter describes algorithms for image and data reconstruction from sequentially 

acquired A-scans while manually scanning an OCT beam over the sample. Some of the 

work described in this chapter has been reported in a recent publication [61]. The 

algorithm is based on estimating the movement of the probe (or sample) by utilizing the 

cross-correlation of the consecutively acquired A-scans. The proposed method can not 

only provide a simpler and less expensive scanning solution with an extended field-of-

view and greater penetration depth inside the tissue, but may also allow greater flexibility 

and freedom of movement while acquiring OCT images. The details of the cross-

correlation based algorithm for image reconstruction are explained, followed by 

simulation results for the longitudinal A-scans assembly and experimental results for the 

lateral manual-scanning case. 

2.1 Cross-correlation based motion estimation approach 

Figure 2.1 shows the displacement of the OCT beam along the transverse (lateral) 

direction and longitudinal (axial) direction. The sample volume of the object probed by 

the beam will constitute a single A-scan. OCT signal s(r) can be modeled as the 

convolution of the point spread function of the system g(•) with a certain scatterer 

distribution function η(•)  

 ( ) ( ') ( ') 's r r g r r dr





   (2.1) 

where r is a position vector denoting spatial co-ordinates (x,y,z). 
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                     Figure 2.1: OCT beam displacements along the longitudinal and lateral directions. 

 

The cross-correlation p(r1,r2) between the two signals collected at positions r1 and 

r2 can be expressed as  

 * * *
1 2 1 21 2  ( ) ( )  ( ') ( '' ) ( ') ( '') ' ''( , ) s r s r r r r g r r g r r dr drr r  

 

 

           (2.2) 

where < • > is the ensemble average and Δr = (r2 - r1) is the displacement of the probe 

between the two measurements. This indicates that the cross-correlation function will 

depend not only on the point spread function but also on the beam displacement Δr, and 

the object properties. Thus, estimation of the displacement Δr will be challenging unless 

some simplifying assumptions are made or something is known a priori about the object 

properties.  

One simplification often made is that the object is assumed to have a 

homogeneous distribution of scatterers and uncorrelated microscopic structures [62]. In 

this case we can express ( ') *( '' )r r r     as a delta function. If c is the average 

scattering strength, then Equation (2.2) can now be written as  
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 2
1 2 1 1( , ) ( ') ( ') 'r r c g r r g r r r dr





      (2.3) 

which shows that for a homogenous distribution of scatterers the cross-correlation 

function is equivalent to the autocorrelation of the point spread function. This assumption 

may be true for certain tissue phantoms but would rarely be true for biological tissues, 

hence causing a bias in the displacement estimation.  

However, if we sufficiently oversample, the cross-correlation based approach may 

be used for image-assembly. An OCT image is a sequential assembly of uniformly 

spaced A-scans. If the motion of the probe is constrained below a certain threshold 

determined by the A-scan acquisition rate, then consecutive A-scans within one 

resolution volume will have high cross-correlation due to the regions of overlap, 

depending on the amount of oversampling of the sample. Non-uniform movement of the 

probe will cause non-uniform sampling of the sample which, in turn, causes variability in 

the cross-correlation between adjacent A-scans. Slower scan velocities will result in 

sequential A-scans with higher correlation, while faster scan velocities will result in 

reduced correlation between successive A-scans.   

The cross-correlation based approach is used for image reconstruction by utilizing 

the correlation information. For an extended A-scan image assembly along the 

longitudinal direction, the lag of the cross-correlation function has been used to find the 

axial displacement of the probe, while for lateral manual-scanning the cross-correlation 

coefficient (which corresponds to a lag of zero) has been used to estimate the lateral 

displacement. The details of the algorithm, the constraints imposed on image acquisition 

and the limitations of this technique are described in the subsequent sections. 
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2.2 Longitudinal A-scan assembly algorithm  

Forward-imaging devices have some advantages compared to the side-imaging needles as 

they can collect data before the device is introduced into the tissue, which can be helpful 

in many clinical procedures [63]. Long A-scan assembly along the longitudinal direction 

using these devices will enable the acquisition of OCT data over several millimeters 

inside the tissue much beyond the penetration depth of OCT beam which is typically 

around 1-3 mm.  

The proposed method shown in Figure 2.2 can be used to assemble a long A-scan 

along the longitudinal direction. A series of A-scans are acquired at different depths using 

an OCT forward-imaging needle. A-scans are then co-registered and synchronized with 

the location of the needle without utilizing any external position sensors. The velocity of 

Direction of 

movement

Tissue phantom

Needle

A-scans

Collection of A-scans acquired 

from different depths 

A-scans aligned according to 

the lag of the cross-correlation 

function

Summation of 

all the A-scans

 
Figure 2.2: Methodology for longitudinal A-scans assembly. 
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the needle is constrained below a certain threshold (depending upon the A-scan 

acquisition rate) such that consecutive A-scans have considerable regions of overlap and 

hence high degrees of correlation between them. The maximum allowable velocity v can 

be determined by 

 sf z

v



  (2.4)  

for a given A-scan acquisition rate  fs, axial resolution Δz, and sampling factor ζ. A value 

of ζ < 2 indicates undersampling and ζ > 2 oversampling while sampling at the Nyquist 

rate occurs when ζ = 2. 

If sufficient oversampling of the object takes place, then the information 

contained in the consecutive correlated A-scans may be used to deduce the amount of 

movement of the needle and hence, reconstruct a long A-scan over several millimeters to 

centimeters of depth. In general the amount of correlation will depend upon the beam 

parameters and the object properties. The A-scans are aligned together depending on the 

estimated lag determined by the cross-correlation function and are then finally summed 

together. However, prior to adding the A-scans together to get an extended A-scan, the 

attenuation of the beam and the distortion due to the beam shape must be compensated 

for each A-scan. 

2.2.1 Simulations for longitudinal A-scan assembly 

Synthetic OCT data was obtained by convolving the point spread function of the system 

with a certain random point scatterer distribution function and propagating the beam back 

to the detector [64]. To simulate the attenuation of the beam as it penetrates inside the 

tissue, each A-scan was multiplied by an exponentially decaying function. Finally some 

additive white Gaussian noise (AWGN) was added to each A-scan. To simulate the 
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forward scanning of the probe, the beam was displaced longitudinally by a random 

number which was generated subject to the condition that the A-scans are oversampled. 

Following this procedure, a series of A-scans were acquired which had overlapping 

regions along the axial (longitudinal) direction due to oversampling. 

The cross-correlation values at a lag zo can be written as 

 *
1 1 [ { ( , )}. { ( , )}]oE S k z S k z z    (2.5) 

where S(k,z) is the complex signal obtained at longitudinal position z,  E [•] is the 

expected value,  [ ]   is the Fourier transform and k is the wave number. The displacement 

of the probe ˆoz is found by evaluating the cross-correlation at each lag and finding the 

maxima of the cross-correlation function by the expression 

 *
1 1arg max  [ { ( , )}. { ( , )}]

o

o o
z

z E S k z S k z z     (2.6) 

This problem is similar to the time delay estimation techniques studied extensively in 

signal processing and communication theory [65].  

In an ideal case, the cross-correlation function (CCF) will have one well defined 

peak corresponding to the displacement of the beam. However, there may be several local 

peaks due to the structure of the object and at times the maxima of the CCF may not 

necessarily correspond to the actual displacement of the beam. Based on the lag values 

obtained, all the A-scans are aligned with each other and then summed together to get the 

extended longitudinal A-scan.  

Figure 2.3 shows sample A-scans and the cross-correlation function (CCF). The 

A-scan in Figure 2.3(b) has been displaced and the corresponding CCF has a well defined 

sharp peak where the lag value at this peak will be an estimate of the displacement of the 

two A-scans.  
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Figure 2.3: Cross-correlation function between two A-scans. (a) Simulated A-scan data. (b) A-scan data 

collected after shifting the beam position along the depth. (c) Cross-correlation function where the peak 

corresponds to the displacement between the two A-scans. 

 

However, there may be cases when the actual displacement of the beam would not 

correspond to the maxima of the CCF. To investigate this effect, an object with scatterers 

with periodic spacing of distance 9 m was simulated. Figure 2.4 shows two A-scans that 

are displaced from each other at a distance of 1 m. However, the CCF has a maxima at a 

lag value of -8 m because the scatterer at position 10 is now at the focus and has a larger 

back-scattered signal in the displaced A-scan.  
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Figure 2.4: Cross-correlation function and the estimation of the lag. 

 

One simple way to remedy this situation is to search for the maxima of CCF in a 

local region. The criteria of the selection of this „lag search‟ region may require some a 

priori knowledge of the object structure. If the mean spacing of the scatterers or the 

amount of oversampling in the acquired dataset is known, the search of the lag can be 

limited to within these limits. Assuming than an object has a periodic scatterer 

distribution of d m, the successful application of this technique would require the 

displacement of the probe to be constrained less than d m and the search for the peak 

must be limited to within lag values corresponding to d m. Practically this requirement 

will put a constraint on the maximum displacement of the probe allowed between the 

collections of two consecutive A-scans. However, with high speed OCT systems 
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available today this may well be within the limits of normal human hand movement. For 

example, at 25 kHz scan rate and 4 m axial resolution, Equation 2.4 requires the 

maximum velocity of hand movement to be less than 1 cm/s to achieve a sampling factor 

of 10.   

 Figure 2.5(a) shows the simulated lags and the estimated lags for this dataset. It 

can clearly be seen that the estimated lags have significant errors which are primarily due 

to the periodicity of the scattering structure. However, by utilizing a priori knowledge of 

the object structure and limiting the search to only 10 positive lag values (the movement 

of the probe in simulations was constrained up to 9 m), significantly more accurate lag 

estimations were obtained, as shown in Figure 2.5(b).  
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Figure 2.5: Simulated and estimated lag values based on the cross-correlation function peak. (a) Without 

limiting the search of the peak in the CCF. (b) Constraining the search of the peak to 10 lag values. Solid 

black lines are the actual lag values while the dashed red line is the estimation of the lag. 

 

Figure 2.6 shows results with a random distribution of scatterers. The scatterers 

were randomly distributed between 5 and 20 m as shown in Figure 2.6(a). The beam 

was randomly moved with a displacement between 1 and 9 m. The collected A-scans 
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are shown in Figure 2.6(b) while Figure 2.6(c) shows the A-scans after aligning them 

with each other. 
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Figure 2.6: (a) Random distribution of the scatterers for a long A-scan. (b) The A-scans appended together 

without positional information of the beam. (c) The alignment of the A-scans based on the peak of the 

cross-correlation function. 

 

The actual and the estimated lags are shown in Figure 2.7(d). In this case the 

peaks were found by constraining the search for the maximum value of the CCF to 

positive lags values (because the probe was simulated to move in only one direction). 

Reconstructions based on the lag values are shown in Figure 2.7(c) where it is noticeable 

that the peaks and the peak spacing correspond to the original scatterer distribution 

reasonably well.  
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Figure 2.7: (a) Original distribution of scatterers. (b) Scatterers after simulating with the OCT forward 

model. (c) The assembled A-scan based on the cross-correlation function. (d) The actual (solid black line) 

and the estimated (red dashed lines) lag values.  

2.2.2 Limitations 

The algorithm presented for longitudinal A-scans assembly has not been verified 

experimentally and therefore is rather limited in scope. This technique will work best in 

probes which have a low numerical aperture and a large Rayleigh range so that 

consecutive A-scans have a large overlapping area.  However, this method will fail in 

those scenarios where the cross-correlation function does not have a well defined peak. 

This will occur for example in objects that have very similar features along the depth. If 

sufficient oversampling of the sample takes place and the velocity of the probe is 

constrained, then the performance can be improved by constraining the search of the 

maxima of the CCF to small lag values. Other methods for finding the peak of the CCF 

such as the Maximum Likelihood or generalized cross-correlation functions may also be 

tried. However, these results and conclusions have been drawn by simulations only and 

they need to be verified by acquiring actual measurements from a forward-imaging 

needle.   
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2.3 Lateral manual-scanning image assembly algorithm 

In this section, a cross-correlation based image assembly algorithm for lateral manual- 

scanning is described. The image assembly is done based on the degree of correlation 

between laterally acquired A-scans which can be measured by the Pearson cross-

correlation coefficient given by  

 
( )( )

( , )
i i j j

i j

I I
i j

 


 

   
  (2.7) 

where <•> is the expected value, Ii and Ij are the intensities of the sequential A-scans, and 

µi, µj and σi, σj are the means and standard deviations, respectively, of the corresponding 

i
th

 and j
th

 A-scans. Identical A-scans would correspond to perfect correlation (ρ=1) 

whereas highly uncorrelated A-scans exhibit zero or no correlation (ρ=0). The cross-

correlation between adjacent scans will depend not only upon the sample structure, but 

also on the sampling factor, speckle pattern [66], and the signal-to-noise ratio of the 

images.  

The block diagram of the algorithm used for image assembly is shown in Figure 

2.8(a). The first A-scan is selected as the reference and the cross-correlation coefficients 

with the subsequently acquired A-scans are computed. By selecting an appropriate 

threshold based on the sample properties, all A-scans that fall within the resolution 

volume can be discarded (as they contain the same information) and only uniformly 

spaced A-scans are used for image assembly. When the cross-correlation coefficient falls 

below the selected threshold, the displacement is deemed to satisfy the desired sampling 

criteria, and that particular A-scan is appended to the assembled image. This assembled 

A-scan is now selected as the new reference and the steps are repeated until the algorithm 

iterates through all the acquired A-scans. The goal of the algorithm presented here is to 
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discard all oversampled regions of a manually scanned image, essentially reconstructing 

the OCT image by assembling A-scans which are equally sampled in distance rather than 

equally sampled in time.  
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Figure 2.8: (a) Flow chart representation of the algorithm. (b) The cross-correlation between A-scans 

decreases with the lateral displacement of the beam. The raw dataset contains A-scans uniformly placed in 

time, but due to non-uniform manual-scanning, the successive A-scans have non-uniform displacement. 

The assembled image consists of A-scans selected by the algorithm which are uniformly spaced in distance. 

2.3.1 Pre-processing steps 

Several pre-processing steps were performed prior to computing the cross-correlation 

coefficients. Noise contributions were minimized by truncating each A-scan so that only 

the portion containing sample information was selected. To make the algorithm more 

robust to variations in the sample structure and to increase the dependency on the speckle 

pattern from the sample, the output from a two-dimensional moving-average (MA) filter 

was subtracted from the raw image. The size of the MA filter should be of the order of 

several resolution elements (both in axial and lateral direction). Whereas a lower value of 
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MA filter size will result in loss of useful speckle information, a higher value will make 

the decorrelation curves less sensitive to the slowly varying sample structure and 

attenuated signal in the axial direction. The size of the filter along the axial dimension 

was independent of the lateral scan velocity and was chosen to be around 5-6 times the 

axial resolution elements. While it is critical to choose the optimum filter size in the axial 

direction to ensure robustness of the algorithm, the requirement of the choice of filter size 

in the lateral direction was relatively relaxed and depended on the average scan velocity. 

2.3.2 Sampling criteria 

An inherent assumption of this technique is the requirement that the acquired data be 

sufficiently oversampled. Oversampling in this context means sampling more than twice 

within the transverse resolution of the OCT system, which depends upon both the 

transverse resolution of the OCT system and the lateral step size. Due to the high A-scan 

rates available with current systems, and to fully reconstruct the features of the sample, 

OCT images are usually oversampled. The sampling factor for a manually scanned 

system along the lateral direction is defined similarly to Equation (2.4), i.e. f xs

v



 , 

where Δx is the transverse resolution of the OCT system which is equal to the diameter of 

the beam (1/e
2
 intensity) at the focus in the sample arm, fs is the A-scan acquisition rate 

(Hz) and v is the velocity of the moving sample or probe.  Similar to the longitudinal 

scanning case, a value of ζ < 2 indicates undersampling and ζ > 2 oversampling, and 

sampling at the Nyquist rate occurs when ζ = 2. This equation can be used to calculate the 

maximum velocity with which the probe or sample can move relative to each other by 

solving for v for a sampling factor of ζ = 2. 
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2.3.3 Threshold selection  

Selection of an appropriate threshold value is essential for the proper working of this 

technique. A decorrelation curve plotted for a sample depicts the decrease in the 

correlation coefficient value as a function of lateral displacement between two A-scans. 

Based on the decorrelation curve of a sample, a threshold can be determined, 

corresponding to the desired sampling factor for the assembled image.  

2.4 Image assembly results for lateral sensor-less manual-scanning  

In this section, experimental results showing the decorrelation curves and images 

assembled from laterally manually scanned tissue phantoms and biological tissues are 

shown. In order to test the validity of the hypothesis that consecutive A-scans will be 

decorrelated outside the OCT resolution volume, decorrelation curves were plotted for 

different tissue samples. The ability of the technique to differentiate between different 

scan velocities was then investigated by moving the sample with uniform scan velocities 

and observing the decorrelation curves. Subsequently, experiments were carried out for 

image assembly using both tissue phantoms and biological tissues. The human tissue 

used in this study was acquired and handled under a protocol approved by the 

Institutional Review Boards at the University of Illinois at Urbana-Champaign and Carle 

Foundation Hospital (Urbana, IL).  

2.4.1 Experimental setup 

A spectral-domain OCT system was used to perform the experiments. A Ti-sapphire laser 

with 800 nm center wavelength and 90 nm bandwidth was used, providing an axial 

resolution of 5 m. The power in the sample arm was 10 mW and the samples were 
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imaged with a 40 mm lens producing a transverse resolution of approximately 16 m. 

The experiments for manual-scanning were conducted at a line scan rate of 1 kHz and an 

exposure time of 200 s for the line scan camera. The sensitivity of the system at 1 kHz 

was measured to be 96 dB. The relatively low scan rate was chosen to allow sufficient 

time for manually translating the sample under the fixed OCT beam.  

    The experiments were conducted by mounting the sample onto a manually 

movable stage and the position of the beam was kept fixed. The computer-controlled 

translational stage axes were aligned with the axes of a manually movable spring loaded 

translational stage in order to obtain OCT images of the same cross-sectional planes 

within a sample while employing two different scanning mechanisms.   

2.4.2 Results    

2.4.2.1 Decorrelation curves  

The variation in the correlation coefficient between two A-scans as a function of lateral 

displacement can be shown by the decorrelation curves. Figure 2.9 shows average 

decorrelation curves for several tissue phantom samples and biological tissues. The cross-

correlation coefficients were obtained by an ensemble average of 400 A-scans at each 

lateral displacement.  A-scans that are within a resolution volume are expected to be 

highly correlated while those outside of the resolution volume of the reference A-scan are 

expected to have little correlation. The decorrelation length, which is measured as the 

decrease in the cross-correlation coefficient to 1/e of its maximum value, would be 

approximately equal to the lateral resolution of the system, which governs the lateral 

speckle size in OCT images of scattering tissues [66]. The results, however, show that 

there exists some degree of variability in the coefficients at each lateral position and this 
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variability increases with an increase in the lateral displacement. This variability may be 

due to a number of factors which include noise, speckle and image features. The 

decorrelation length may be higher in samples containing prominent structural features as 

is evident in the case of adipose tissue which contains highly regular structural features 

typical of adipose cells. Despite this variability, in general, the cross-correlation 

coefficient values tend to decrease with increasing lateral separation.  
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Figure 2.9: Decorrelation curves obtained from galvanometer-scanned images of several tissue phantom 

samples and biological tissues (negative distance corresponds to the cross-correlation between the current 

A-scan and previously acquired A-scans).  
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Figure 2.10: Variations in the cross-correlation coefficient values for tissue phantom. 

 

The preprocessing steps (MA filter size and the A-scan truncation range) may also 

cause variations in the decorrelation lengths between different samples as the correlation 

coefficients may be influenced by the contributions of noise and the varying beam 

diameter within the truncated A-scans. All the decorrelation curves converge to a low 

correlation value for a lateral displacement well beyond the transverse resolution of the 

system. The decorrelation curves obtained in Figure 2.9 were obtained by averaging over 

several A-scans. Figure 2.10 shows the variations in the cross-correlation coefficient 

values (with no averaging) at three different displacements. These curves suggest that the 

data has to be significantly oversampled and the cross-correlation coefficient values need 
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to be averaged over several A-scans for a more accurate estimation of the cross-

correlation coefficient value. 

2.4.2.2 Velocity estimation during lateral scanning  

For proof-of-principle, a silicone-based tissue phantom was created with 2-5 μm sized 

titanium dioxide (TiO2) scattering particles. A standard galvanometer-scanned OCT 

image of the phantom was acquired. The means and the standard deviations of the cross-

correlation coefficients for over 2000 A-scans at different lateral displacements were 

computed and are shown in Figure 2.11(a). The OCT beam was then held fixed while the 

sample was moved along the lateral direction with 5 different velocities using a 

computer-controlled movable stage. A threshold of 0.8 corresponding to a sampling 

factor of 4 was selected from the decorrelation curve. The images were then 

downsampled using the algorithm for the chosen sampling factor. The higher the 

velocity, the lower the sampling factor and the fewer the A-scans selected per resolution 

element. The A-scan redundancy ratio (ARR) for the downsampled assembled image was 

then calculated where ARR is defined as the number of A-scans compared for each 

selected A-scan. The mean and the standard deviation of the A-scan redundancy ratio 

(ARR) are shown in the blue curve in Figure 2.11(b). 
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Figure 2.11: Results with a silicone-based tissue phantom with titanium dioxide (TiO2) scattering particles. 

(a) Decorrelation curve as a function of lateral distance. The solid curve is the mean and the dotted curves 

are the standard deviations of the correlation coefficients. (b) A-scan redundancy ratio (ARR) as computed 

by the algorithm for various sample scan velocities. The error bars show one standard deviation above and 

below the mean.   

 

Equation (2.4) was used to calculate the actual sampling factor for different scan 

velocities for the given A-scan rate of 5 kHz and transverse resolution of 16 m. The 

calculated sampling factor was then divided by the desired sampling factor (equal to 4 in 

this case) to calculate the relative sampling ratio between the raw and assembled image 

and is plotted as the red dotted curve in Figure 2.11(b). The results show that the 

experimentally obtained results are in good agreement with the numerically predicted 

values. The algorithm is able to compensate for variations in scan velocity by adjusting 

the periodicity of A-scan selection from the raw image data set. The curves suggest that 

this algorithm can provide better results for highly oversampled raw images, which 

would occur with slower scanning velocities or with advanced OCT systems with 

exceptionally fast A-scan acquisition rates.  
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2.4.2.3 Image assembly for tissue phantoms 

A set of experiments were conducted to perform image assembly by moving the sample 

with a non-uniform scanned velocity. All images have been log-normalized and displayed 

in the inverted gray scale.  

A tissue phantom with titanium dioxide (TiO2) scattering particles (size < 5 μm) 

was prepared for imaging. Figure 2.12(a) shows the tissue phantom uniformly sampled in 

time and distance by moving the sample with uniform velocity by a computer-controlled 

stage. Figure 2.12(b) consists of 5000 A-scans acquired over duration of 5 s by non-

uniform scan velocity of the sample. The OCT beam was held fixed and the phantom was 

translated along the lateral direction with different velocities by programming a movable 

stage. Approximately 1900 A-scans were acquired while the sample moved at a velocity 

of 2.5 mm/s and 0.5 mm/s, respectively, and roughly 1200 A-scans were acquired during 

the stop interval in between. 
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Figure 2.12: Image assembly for a silicone-based tissue phantom with titanium dioxide (TiO2) scattering 

particles. (a) Motorized stage scanned image (uniformly sampled in distance and time). (b) Non-uniformly 

scanned image (sampled non-uniformly in distance but uniformly in time). (c) Assembled image using A-

scan selection algorithm (compensated for non-uniform sampling in distance). (d) Cross-correlation matrix 

with red points showing the A-scans selected for image assembly by the algorithm. 
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To aid visualization of the A-scan selection process from the algorithm, the 

correlation matrix is displayed in the form of a 2-D image (Figure 2.12(d)). Each row 

shows the variation of the cross-correlation coefficients as a function of the adjacent A-

scans. A solid diagonal line would correspond to the fact that the A-scans are perfectly 

correlated with themselves. The red points show the A-scans selected by the algorithm 

for assembling the image. The spacing of these red points will vary depending on the 

degree of sampling of the A-scans.  In a relatively homogeneous sample, as shown in 

Figure 2.12, the spacing of the red points varied proportionally with the degree of 

oversampling. The zoomed-in areas show the different ARR corresponding to different 

sample scan velocities. It should be noted that calculating the complete cross-correlation 

matrix is not necessary for image assembly. Rather it is merely shown here to aid in 

visualizing the variations of cross-correlation coefficients with lateral displacement, 

where dark regions correspond to little or no movement and lighter regions correspond to 

rapid movements. Figure 2.12(c) shows the result after correcting for non-uniform 

sampling in distance. A threshold value of 0.7 was used for image assembly 

corresponding to a sampling factor of 2. The algorithm selected approximately 580 and 

135 A-scans from the regions corresponding to the velocities 2.5 mm/s and 0.5 mm/s, 

respectively, making the assembled image uniformly sampled with a sampling factor of 

1.95-2.30. 

Figure 2.13 shows the result with a more aggressively scanned tissue phantom 

with multiple stops while scanning. In this case, the phantom was mounted on a spring-

loaded movable stage (not controlled by the computer) under a fixed OCT beam. Figure 

2.13(a) shows the uniformly scanned image while Figure 2.13(b) shows the manually 
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scanned image. Figure 2.13(c) shows the final image assembly clearly showing that the 

algorithm has been able to remove many of the distortions while manually scanning the 

sample.  

Correlation Coefficients between Adjacent A-Scans
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Figure 2.13: Image assembly for a silicone-based tissue phantom with titanium dioxide (TiO2) scattering 

particles. (a) Motorized stage scanned image. (b) Non-uniformly scanned image. (c) Assembled image 

using A-scan selection algorithm. (d) Cross-correlation matrix with red points showing the A-scans 

selected for image assembly by the algorithm. 

Figure 2.14 shows the result from manually scanning a plasticine sample over a 

distance of 1 cm. Plasticine is a highly scattering medium with limited penetration depth. 

The surface features were placed in the sample by manually scratching and carving the 

surface with a razor blade. The algorithm is able to assemble most of the surface image 

features using a threshold value of 0.3. The average sampling factor in Figure 2.14(b) is 

estimated to be 4. The assembled image in Figure 2.14(c) consists of ~ 600 A-scans. The 

algorithm fails near the 4 mm mark in Figure 2.14(a) due to the highly similar surface 

features which are misinterpreted as stops by the algorithm. 
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Figure 2.14: Image assembly for a plasticine sample over a sample length of 1 cm. (a) Uniformly scanned 

image using a motorized stage. (b) Non-uniform hand-scanned image. (c) Assembled image. (d) Cross-

correlation matrix with red points showing the A-scans selected for image assembly. 

 

Another example of image assembly is shown in Figure 2.15 which shows the 

result of hand scanning of an agarose based sample with titanium dioxide scattering 

particles forming internal structures. The structures seen within the sample are probably 

due to the aggregation of the particles. The sample was scanned by hand over a distance 

of 10 mm. In the uncorrected image Figure 2.15(b), the sample structure is not apparent 

while Figure 2.15(c) shows reasonably good resemblance with the uniformly scanned 

image of Figure 2.15(a). The difference at the start of the image may be due to the 

misalignment of the scanning plane while manually scanning the sample.   
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Figure 2.15: Image assembly for an agarose-based tissue phantom with titanium dioxide (TiO2) scattering 

particles. (a) Uniformly scanned image using a motorized stage. (b) Non-uniform hand-scanned image. (c) 

Assembled image. (d) Cross-correlation matrix with red points showing the A-scans selected for image 

assembly. 

2.4.2.4 Image assembly for biological tissues 

Image assembly with biological tissues proved to be much more challenging compared 

with tissue phantoms. In Figure 2.16, human adipose tissue was manually scanned over a 

distance of 1.5 mm. A threshold value of 0.7 was used due to the relatively slow rate of 

decorrelation of adipose tissue. A line scan rate of 5 kHz was used for A-scan 

acquisitions. The assembled image in Figure 2.16(c) has good correlation with the 

galvanometer-scanned image in Figure 2.16(a). Limitations in the algorithm are apparent 

at the lateral displacement of 0.3-0.5 mm in Figure 2.16(c) which are believed to be due 

to hand vibrations while trying to hold the spring-loaded stage still. These vibrations 

cause rapid decorrelation of the A-scans which the algorithm misinterprets as valid probe 

displacements.  
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Figure 2.16: Image assembly for human adipose tissue. (a) Galvanometer-scanned image. (b) Non-

uniformly hand-scanned image. (c) Assembled image. (d) Cross-correlation matrix with red points showing 

the A-scans selected for image assembly. 

 

Another example with rat adipose tissue is shown in Figure 2.17. The assembled 

image shows that, although the algorithm has does a decent job in assembling the image 

from the manually scanned data, it is unable to reconstruct the fine structures within the 

sample. 
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Figure 2.17: Image assembly for Rat adipose tissue. (a) Galvanometer-scanned image. (b) Non-uniformly 

hand-scanned image. (c) Assembled image. (d) Cross-correlation matrix with red points showing the A-

scans selected for image assembly. 
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Figure 2.18 shows the results with manual-scanning of human breast tissue 

containing both tumor and adipose tissues. The sample was moved manually under a 

fixed OCT beam along a distance of 1 cm. The sample was stopped for various lengths of 

time during scanning as shown in Figure 2.18(b). The assembled image in Figure 2.18(c) 

shows that the algorithm is able to remove the artifacts associated with abrupt stops 

during manual-scanning. The differences between the motorized-stage scanned image 

and the hand-scanned image are likely due to the misalignment of the scanning plane 

while manually moving the sample by hand without using the translational stage.  
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Figure 2.18: Image assembly for a human breast tissue over a sample length of 1 cm. (a) Uniformly 

scanned image using a motorized stage. (b) Non-uniform hand-scanned image. (c) Assembled image.  (d) 

Cross-correlation matrix with red points showing the A-scans selected for image assembly. 

2.4.3 Limitations  

Although successful image assembly has been demonstrated using phantom samples and 

biological tissues, the present technique has a number of limitations that need to be 

overcome when performing real-time in vivo imaging.  

This technique relies on the selection of an appropriate threshold for accurate 

image reconstruction. The current selection method for the optimal threshold was based 
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on the decorrelation curves of a particular sample similar to those shown in Figure 2.9. 

However, as the results show, there exist inter-sample and intra-sample variations in the 

cross-correlation coefficients at each lateral displacement. These variations can be 

attributed to inhomogeneity of structural features in tissues, variability in speckle 

patterns, and noise in the system. Due to these variations, selection of a single threshold 

throughout the image assembly procedure may produce errors in the final reconstructed 

image. One possible solution is to adaptively vary the threshold based on the tissue 

properties. Another possible solution to this problem could be to select a very low 

threshold value based on the fact that, at distances beyond the transverse resolution of the 

system, the cross-correlation coefficient values become very small. However, this would 

make the final reconstructed image very pixilated as very few A-scans will be selected 

for image formation. As the success of this technique depends significantly on how well 

the decorrelation curves represent the actual lateral displacement, further studies need to 

be done to investigate the dependency of various parameters on the decorrelation curves. 

The algorithmic techniques described here operate under the assumptions that 

scanning is unidirectional along one dimension with no relative change in the orientation 

between the probe and sample. However, in practice, hand jitter and probe rotation while 

manually moving the probe will invalidate many of these assumptions, resulting in image 

artifacts. More sophisticated algorithms can be designed to compensate for these effects. 

Cross-correlating a block of A-scans rather than single A-scans can potentially be used to 

detect change in scan direction and orientation of the probe [35]. By selecting depth-

dependent regions along each A-scan from which to do cross-correlations between 

adjacent A-scan regions, it may be possible to track angular out-of-plane displacements 
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as well.  The intended application for this approach is to assemble large images over scan 

ranges that exceed the capabilities of current galvanometers and computer-controlled 

scanning techniques. In cases for a hand-held probe, needle-probe, or catheter, the precise 

in-plane orientation of the acquired data may not be as critical as capturing adjacent A-

scans over large lateral distances.  

This technique may impose certain limitations on the speed of image acquisition. 

Our experimental results show that a sampling factor as high as ~ 50 may be necessary 

for good results. Hence the velocity of the probe has to be constrained so that the sample 

is sufficiently oversampled. However, this limitation could be easily countered due to the 

availability of high-speed OCT systems [4, 34]. While commercial OCT systems have 

scan rates in the range of 25-40 kHz, fast swept-source or spectrometer-based OCT 

systems can extend the A-scan rates to several hundreds of kHz. For instance, a typical 

Fourier-domain OCT system with a 25 kHz A-scan rate may allow a probe with 16 μm 

lateral resolution to be moved with a maximum velocity of 8 mm/s while still allowing a 

sampling factor of 50. Hence fast OCT systems would allow reasonable freedom to allow 

free-hand manual-scanning without compromising the effectiveness of the algorithm. 

Moving faster than the threshold will result in undersampling. A possible extension of 

this algorithm could be to detect undersampling by comparing the cross-correlation 

coefficients of adjacent A-scans against a lower threshold value. Subsequently, 

interpolation algorithms can be used to estimate the missing A-scans [36]. Another 

potential extension could be to use the phase information to detect lateral displacement. 

Phase information has been found useful in a number of other techniques such as Doppler 
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OCT and elastography. In this analysis, the rapid variability of phase between adjacent 

A-scans made it an unreliable metric for quantifying the amount of lateral displacement.
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CHAPTER 3 SONIFICATION OF OCT DATA 

This chapter describes the sonification of OCT data and images. A portion of the initial 

work reported in this chapter was done in collaboration with Morgan Wang. The OCT 

images used for sonification were acquired by Steven Adie and Adam Zysk. All of these 

individuals were members from the Biophotonics Imaging Laboratory at the Beckman 

Institute. Some of the results shown in this chapter have been adapted from recently 

published work [67]. 

A multi-sensory representation of OCT data may be an effective method to 

enhance the real-time interpretation of OCT data and images. Audio representation 

(known as sonification) may also be useful in those scenarios in which non-image data is 

acquired. This chapter discusses various techniques of sonification of data, the psycho-

acoustic principles behind any sonification system design, and the results of sonification 

of OCT data in A-scan mode sonification and image-mode sonification. The basic aim of 

the sonification presented here is to distinguish between normal and tumor tissues based 

on the rendered audio signals.  

3.1 Methods for sonification of data  

The audio representation of data is known as sonification. Various methods of translating 

data into auditory signals have been reported in the literature [68]. Although, there is no 

agreed upon classification of sonification techniques, most of the sonification methods 

can be divided into the following main categories.  
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3.1.1 Audifications 

Audification is an audible playback of the data samples where each data value directly 

represents a sound waveform sample. Audification is effective if the physical 

mechanisms that have generated the data samples are similar to the physics of natural 

sound transmission through air. The frequency range of data should be within the human 

audible range, i.e. 20-20,000 Hz, and there should be enough data points to play sound 

for a sufficient duration. However, for most real-world data these conditions are rarely 

met. Hence, typically the data has to be re-sampled, the frequencies shifted to within the 

human audible range, and appropriate scaling of the data has to be done prior to audible 

playback of the sound [69]. Very few successful audifications of data have been 

demonstrated. Audification of seismic data is an exception, primarily because the physics 

of seismic vibrations transmitted through earth is very similar to sounds transmitted 

through air. 

3.1.2 Earcons  

Earcons have been defined as non-verbal audio messages consisting of short, rhythmic 

sequences of pitches that can have variable intensity, timbre and amplitude to represent 

different categories of data. Simple earcons can be combined in a tree-like hierarchy to 

produce more complex sounds. For example earcons representing delete, create, file, 

program could be combined to produce more complex earcons representing for example 

create file or delete program. Earcons have found extensive applications in human- 

computer interfaces (HCI). However, earcons require data to be categorized in distinct 

units which is not possible in many applications [70].  
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3.1.3 Auditory icons 

Auditory icons are based on associating a unique sound to a specific message (or signal) 

[71]. In contrast to earcons, auditory icons have a direct analogy between the sound and 

the event. For example, auditory icons (unique sounds) can be assigned to normal and 

tumor tissues in biomedical data. The limitation of auditory icons is that they require a 

priori classification of data. However, some authors have used parameterized auditory 

icons to represent the variability in the data.     

3.1.4 Parameter-mapped sonification 

Parameter-mapped sonification is the most widely used technique for sonification. It is 

based on calculating features (parameters) from the data and mapping them onto sound 

attributes such as pitch, loudness, tempo, and duration. This would typically require 

scaling the range of the data parameters by using various linear/nonlinear mapping 

functions to fit within the human sensation of these sound attributes. This method does 

not require prior categorization of data and hence has been widely applied for process 

monitoring. However, interfaces based on parameter-mapped sonification are more 

difficult to design and interpretation may require extensive user training. 

3.1.5 Model-based sonification 

Another approach is model-based sonification where the data parameters control a 

parameterized sound model to generate non-speech audio [68]. 

3.2 Psycho-acoustic principles 

The psycho-acoustic properties of human hearing have been widely studied and are well 

understood. Psychological perception of sound can be described in terms of loudness, 
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pitch, timbre and time. These sound attributes in turn depend on the physical properties of 

intensity, frequency, waveform and duration of the sound waves. The relationship 

between the physical properties and the psycho-acoustic perception of sound must be 

considered for sonification design. Moreover, the interactions among the sound attributes 

must also be taken into account, especially when more than one of these variables is to be 

manipulated simultaneously in the same sonification. 

The psycho-acoustic concepts of critical band and just noticeable difference (jnd) 

have the strongest implication for a good sonification system design. Critical band is the 

frequency dependent bandwidth at which sound energies interact with each other. It can 

be approximated by the relationship 2 0.6925 75(1 1.4 )f f    where f is the center 

frequency in kHz [72]. The phenomenon of critical band is believed to be due to the 

excitation of the same region of the basilar membrane by different tones (that lie within 

this band). Just noticeable difference (jnd) characterizes the ability to differentiate 

between two nearly equal stimuli. In general, people are much better at making relative 

judgments of the sound attributes than at making an absolute judgment.   

3.2.1 Loudness 

Loudness of a sound is the magnitude of the auditory sensation produced by the sound 

[73].  The human perception of loudness is primarily dependent upon the sound pressure 

(intensity) values; however, the frequency, duration and bandwidth of sound also 

influence the perceived loudness.  

According to the Steven‟s power law, loudness (L) is related to the sound 

intensity I by the relationship 0.3L kI where k is a constant which depends upon the 
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units used and individual perception. The loudness level of sound is generally measured 

in units of phons which are curves of constant loudness. The human sensitivity to 

loudness as a function of frequency is shown by the Equal-Loudness contours (in units of 

phons) in Figure 3.1 [73]. Some general trends can be seen from these curves. These 

curves show that the sensitivity of the human ear to loudness is greatest between 3000 

and 4000 Hz and it decreases at lower frequencies. The curves suggest that the variation 

in perceived loudness may be minimized by using a frequency range of approximately 

800-2000 Hz. Loudness is also dependent on duration: with increasing duration of a 

sound the perception of loudness stabilizes after about 100 ms. If frequencies of two 

different sounds lie within the critical band, then the perceived loudness will only slightly 

change; however, if they lie outside the critical band the perceived loudness may greatly 

increase.   

The jnd in intensity between two sounds is about 1 dB (a 12% change in 

intensity). However, in real life scenarios, a change of 3 dB (50% change in intensity) is 

easily detectable by humans [72]. Using loudness as a sound attribute for sonification is 

challenging as the human auditory system has a tendency to adjust itself to the loudness 

level of sound; loudness is affected by the distance from the source, and the loudness of a 

sound may be masked by other sounds in the environment [72, 74].  
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Figure 3.1: Equal-loudness contours (from B. Moore, "Psychoacoustics," in Springer Handbook of 

Acoustics, T. D. Rossing, ed., pp. 459-501, 2007) [74]. 

 

3.2.2 Pitch 

The sensation of pitch can be defined as the perceived fundamental frequency of the 

sound. Perception of pitch is primarily dependent upon the frequency of the sound wave, 

but is also a function of the intensity level and duration of sound. In harmonic sounds, 

pitch depends on the fundamental frequency while for inharmonic sounds it is a function 

of the amplitude-weighted mean of the spectral components. The audible range for most 

humans is from 20-20,000 Hz. On average, sound should have duration of at least 13 ms 

to be ascribed as a definite pitch. A short duration sound will be heard as a click rather 

than a pure tone.   
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Pitch discrimination between two tones depends on their intensity and frequency 

difference as shown in Figure 3.2. These curves show that the human ear is more 

sensitive to frequency changes at the mid-frequency region between 1-4 kHz. The jnd for 

pitch is typically about 1/30th of the critical bandwidth at a particular frequency. 

Although the human ear has sensitivity up to around 20 kHz, sensitivity of the human ear 

drops significantly at higher frequencies. Thus, it is reasonable to use frequencies in the 

middle of the audible range, i.e. 100-5000 Hz, so that the sound is audible in most 

circumstances.  
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Figure 3.2: Sensitivity of pitch as a function of frequency and intensity of sound. Numbers on the curves 

indicate levels above the threshold of hearing. (from H. F. Olson, Music, Physics and Engineering, Dover 

Publications,1967) [73]. 

3.2.3 Timbre 

Those characteristics of sound which enable the human auditory system to distinguish 

between sounds of similar pitch and loudness are, by definition, timbre. Timbre 

perception depends upon the harmonic content, temporal evolution and the vibrato and 

tremolo properties of the sound waves. Timbre may be useful to represent multiple data 

streams simultaneously.  
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3.3 Sonification of OCT data 

In this section, different sonification approaches of OCT data are described. A well 

designed sonification system must be fast, the sound must make intuitive sense, and the 

sounds must effectively extract important diagnostic features from the OCT data.  

A simple method of sonification is the use of earcons or auditory icons. For 

earcons, suppose two parameters are calculated from data and the range of values in these 

parameters are further categorized as low, medium and high values. Each of the 

parameters can be assigned a unique sound and some property of this sound can be 

changed based on the low, medium or high categories. Earcons can potentially be used 

for OCT data but the main difficulties are the requirement of prior categorization of data. 

A more simple method is the use of auditory icons, where each A-scan can be 

classified as either normal or tumor. Based on this classification, a unique predetermined 

sound can be assigned to each A-scan. This requires the use of classification algorithms 

to distinguish between tissue types. Real-time image interpretation is thus performed by 

the classification algorithm, which is subject to its own sensitivity and specificity 

limitations  [75].   

 One method could be the direct audification of spatial-domain intensity data 

which has the potential advantage of high speed due to low processing requirements. 

However, this audification may be noisy due to the presence of speckle in OCT. 

Audification has in general been successfully applied in those situations where the 

physical model of the data generating mechanisms is very similar to the physics of sound 

transmission through air. OCT datasets in general will not meet this requirement. 
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However, removing the noise from the OCT data and re-sampling the data to fit within 

the audible range may be an interesting approach to try for some OCT datasets.  

Another method was primarily adapted from previous work [76]. In this method 

the horizontal dimension represents time and the vertical direction represents pitch for a 

2-D OCT image. The number of sinusoids is determined by the number of vertical pixels 

in each column. A frequency range of 20-10,000 Hz was logarithmically mapped to the 

number of pixels (in this case 1024). The intensity of each pixel is the amplitude of the 

corresponding sine wave. The final sound is the summation of all sinusoids from a 

particular column in an image and was played for duration of 10 ms keeping in mind the 

time required to perceive a pure tone by the human auditory system. Although this 

method worked reasonably well, it required excessive computation due to the large 

number of sinusoids required for sound synthesis.  

3.4 Parameter-mapped sonification 

Parameter-mapped sonification, which is based on the mapping of features extracted from 

data into sound attributes, was chosen for sonification of OCT data. In this method the 

sensitivity of the human auditory system is utilized for tissue classification. Hence, it 

does not require prior classification of the data. The method of parameter-mapped 

sonification is illustrated in Figure 3.3. Characteristics of A-scans or image parameters 

that can be used to classify tissue types are chosen, and the extracted parameters are then 

mapped to a set of sound attributes for sonification. The sound attributes depend on the 

sound synthesis algorithm employed. The mapping from the data parameters to the sound 

attributes is performed while considering the psycho-acoustic response of the human 

auditory system.  
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Figure 3.3: Parameter-mapped sonification for OCT. 

3.4.1 Parameter extraction from OCT data 

A range of different parameters have been reported for tissue classification in OCT. 

These parameters depend on the nature of the data and may typically be the slope, 

intensity variations, spatial frequencies, periodicity of A-scans, and textural features of 

OCT images [59, 75, 77, 78]. The extracted parameters must have good discriminating 

power and must be computationally simple in order to meet the real-time requirements of 

a sonification system. In this sonification to distinguish between adipose and tumor 

tissue, the slope and the energy in the Fourier space regions of the A-scans have been 

used as data parameters.  

OCT images of human breast adipose and tumor tissue, and the corresponding A-

scans, are shown in Figure 3.4. Adipose tissues mostly consist of lipid-filled fat cells 

called adipocytes which are typically of 20-160 microns in size. These cells give adipose 

tissue its regular structure. Tumor is characterized by the loss of normal tissue 

architecture, alteration in the nuclear size and shape, and an increase in the nucleus to 

cytoplasm ratio which is defined as the diameter of the nucleus divided by the diameter 

of the cytoplasm. Optically, the nucleus is a highly scattering organelle. Hence tumor 

tissue in an OCT image is very dense and highly scattering and the resulting OCT signal 

as it propagates through the tissue suffers from more attenuation compared to adipose 

tissue.  
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The different attenuation causes a difference in the slopes of the (logarithmically 

mapped) A-scans with tumor having a higher (steeper, more attenuating) slope compared 

to adipose tissue. The slopes were calculated by selecting values in the A-scans that were 

above a certain threshold (~ 30 % of the maximum value) and then fitting a linear 

function to these values.  

Previous work has shown that the unique Fourier signatures from tissue types can 

be used for classification [75]. The Fourier transforms of A-scans are shown in Figure 3.4 

(e). Adipose, due to its regular structure, has more energy concentrated in the low 

frequency regions while tumor has more high frequency content. The Fourier transform 

was normalized to a unit area and was divided into non-overlapping regions. The squares 

of the areas under the curve corresponding to the low frequencies (labeled as region I), 

middle frequencies (II) and high frequencies (III) were selected as the three spectral 

parameters in our sonification.  
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Figure 3.4: OCT image and data analysis from human breast. (a) Adipose tissue and (b) tumor tissue. (c) 

A-scan corresponding to the highlighted line from the adipose tissue. (d) A-scan corresponding to the 

highlighted line from the tumor tissue. (e) Normalized Fourier transforms (average of 150 A-scans). Roman 

numerals indicate the regions corresponding to the three spectral parameters. Scale bars represent 200 m. 

The superimposed lines in (c) and (d) represent the 1
st
 order fit to the A-scan for calculation of slope. 
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3.4.2 Sound synthesis 

A number of sound synthesis methods such as additive synthesis, subtractive synthesis, 

frequency modulation (FM) synthesis, and granular synthesis can be used to generate 

sound [79]. For any given application there is no preferred technique, with each having 

its own merits and demerits.  

FM synthesis was used, which has the advantage of generating a rich variety of 

sounds with the control of only a few parameters. The FM signal can be mathematically 

described as 

 .cos(2 sin 2 )c mA f t M f t   (3.1) 

where fc is the carrier frequency, fm is the modulating frequency, A is the amplitude and M 

is the modulating index. In this technique, the carrier wave frequency fc is modulated by 

the modulating wave frequency fm. The FM modulated signal consists of a complex tone 

with frequency components separated from one another by the modulating frequency as 

shown in Figure 3.5. However, if there are reflected side frequencies (due to sidebands 

falling into the negative frequency domain of the spectrum) then the ratio c mf f would 

determine the position of the components in the spectrum [80]. The amplitude of the 

components can be determined by the Bessel function which would be a function of the 

modulating index M, where higher values of M imply that more spectral energy will be 

dispersed among the frequency components, as can be seen from Figure 3.5(b). 
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Figure 3.5: (a) Spectral components in FM synthesis. (b) FM synthesis. Amplitude=1, carrier frequency 

fc=1,000 Hz, modulation frequency fm=200 Hz. 

 

3.4.3 Parameter mapping to frequency-modulation synthesis model 

The parameters extracted from the OCT data can be mapped to any or all of the 

attributes. The slope of the A-scans and the spectral features corresponding to the low (I), 

middle (II) and high frequency (III) regions of the Fourier spectrum of the data as shown 

in Figure 3.4(e) were selected as the significant parameters. These parameters were 
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mapped after appropriate scaling into the carrier frequency fc, modulation index M, 

amplitude A and modulating frequency fm, respectively, where fm = [(Energy in region III) 

x  fc)].  

Interpretation of the mapping is shown in Figure 3.6. The slopes of the A-scans 

are mapped to the pitch, the high frequency content determines the separation of the 

spectral components relative to the carrier frequency, while the low frequency content 

will determine spectral energy within these spectral components. The final synthesized 

sound is strongly influenced by the choice of carrier frequency. In these datasets, slope 

was the variable with the greatest discriminating power and hence was mapped into the 

carrier frequency. These mappings made the sonifications of tumor and adipose tissues 

have non-overlapping audio spectra and made the perceived sound of tumor of higher 

pitch. This makes intuitive sense as the Fourier spectra of tumor has more high frequency 

content compared to that of adipose tissue.  
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Figure 3.6: Mapping of parameters for sonification via FM synthesis. 
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Sonification of the data was performed on a block by block basis, with the final 

output containing a clicking sound at the end boundary between blocks. These artifacts 

were minimized by multiplying the sonified block by an envelope having linearly rising 

and decaying slopes at the edge of the blocks as shown in Figure 3.7. 
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Figure 3.7: Multiplication of each block by an envelope to remove clicking sounds generated between 

blocks. 

3.4.4 Sound rendering modes 

The sonification of OCT data has been organized into two modes, i.e. A-scan and image-

mode sonification. In the A-scan sonification mode each individual A-scan (or a group of 

A-scans for faster playback) is sonified. Although this mode has high resolution, it has 

the limitation of being non-real-time as the typical A-scan acquisition rate (~ 0.1 ms for 

an A-scan rate of 10 kHz) will be much higher than the playback time (~100 ms) of the 

sound. A playback time of 100 ms was chosen based on the tone perception of the human 

ears.  
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Image-mode sonification may be used for real-time sonification of the data. In the 

image-mode each frame is played for the duration of the playback time of the sound, and 

hence is much faster than the A-scan mode. In this mode each frame is divided into a 

certain number of blocks and for each block the average value of the parameters are 

calculated and mapped into sound, as shown in Figure 3.8. The final synthesized sound 

consists of summation of the waveforms from each individual block. The sonification 

(parameter calculation + sound synthesis) of each block is independent of all the other 

blocks. Hence, these calculations can be done in parallel for each block, which will 

significantly decrease the computational time for each frame. However, this mode will 

have a lower resolution than the A-scan mode (where the resolution depends on the 

number of divisions of each frame).  
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Figure 3.8: Block diagram for the image mode. 
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3.5  Results 

Sound was synthesized using Matlab and played at a sample rate of 10 kSamples/s. The 

results obtained by sonification in the A-scan mode and the image mode are shown 

below. 

3.5.1 A-scan mode 

In the A-scan mode the acquired A-scans are grouped together in the form of bins, each 

10 A-scans wide. The data parameters are calculated for each A-scan and averaged 

together for each bin. Each bin is played for duration of 100 ms. The mappings of the A-

scans parameters obtained from adipose and tumor tissues are shown in Table 3.1, which 

shows that adipose will have a sound of lower pitch with the spectral components more 

closely spaced to each other and energy more widely dispersed among them. In contrast, 

tumor will have a sound of a higher pitch with relatively large spacing between the 

spectral components, and with most of the energy concentrated within the carrier 

frequency (due to low modulation index M). 

Table 3.1. A-scan parameter mapping to FM synthesis 

 

FM synthesis parameters   A-scan parameters Adipose Tumor 

Carrier frequency           (fc) Slope Low High 

Modulation index          (M) Low frequency content       (I) High Low 

Amplitude                      (A) Middle frequency content  (II) Moderate Moderate 

Modulation frequency   (fm) High frequency content     (III) Low High 

     Note:  Roman numerals refer to frequency bands shown in Figure 3.4.   

Figure 3.9 shows the sonification of a 2D OCT image containing a tumor margin. 

The extracted parameters from the image are displayed in image form in Figure 3.9(a). 

The dataset was acquired using a spectral-domain OCT system with 800 nm center 
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wavelength and 70 nm bandwidth, providing an axial resolution of 4 m. The 

spectrogram (computed using the short time Fourier transform) shown in Figure 3.9(c) 

displays the frequency components of the sound at each time instant and is helpful in 

visualizing the sonification results. Results demonstrate that tumor and adipose have 

distinct sounds.  
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Figure 3.9: Sonification for A-scan mode. (a) Parameters extracted from image (for display purposes they 

have been normalized between zero and one). (b) Tissue containing tumor (left side of the image) and 

adipose (right side of the image). (c) Spectrogram of the output sound. 



 

67 

 

 

3.5.2  Image-mode 

The results from image-mode are shown in Figure 3.10. The sonification is applied to a 

three-dimensional dataset of dimensions 1.7 mm x 3 mm x 5 mm containing both adipose 

and tumor tissues. The dataset was acquired intra-operatively using a 1310 nm spectral-

domain OCT system with 11 m axial and 20 m transverse resolution. Each frame was 

divided into 10 blocks and sonification was done based on the scheme shown in Figure 

3.8. A part of the dataset (after 30 s) is played backwards to highlight the distinction in 

sonification of adipose and tumor tissues.  

The spectrogram in Figure 3.10(b) demonstrates that the sound of tumor has 

higher frequency content than that of adipose tissue. A frame consisting mainly of 

adipose tissue had a somewhat „bubbly‟ sound at low frequencies while tumor had a more 

random and intense sound at high frequencies. The change of sound was especially 

evident at the boundary frames between tissue types. In order to test the human 

perceptive capability of distinguishing between adipose and tumor tissue, a frame 

consisting of tumor tissue was inserted (at position 37) in between 190 frames consisting 

of adipose tissues. If only image data is displayed, then the rapid transition of adipose-

tumor-adipose may be missed if the user does not pay attention to the visual display at 

that particular instant of time. However, the addition of another information channel in 

the form of audio in conjunction with the visual display made this abrupt transition more 

easily noticeable during data acquisition.   
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Figure 3.10:  Sonification using the image mode. (a) A single frame from a three-dimensional volumetric 

dataset, which consists of 450 frames played at 10 frames per second. (b) Audio spectrogram of the output 

sound where each frame in the three-dimensional volume now corresponds to a playback time of 100 ms, 

and the audio spectrum from each frame is represented by a single column in this spectrogram. 

3.6 Limitations  

The aim of this sonification was to use the human auditory perception as a classifier to 

distinguish between normal and abnormal tissue types based on the sonification of OCT 

data.  Sonification of data, however, has some fundamental drawbacks and limitations. 

Audio perception like all other human senses is very subjective. Different individuals will 

perceive the same sound very differently. Moreover, there could be potential interference 

from other sound sources such as speech. Another limiting factor is that sound attributes 

are not completely independent of each other.  For example, loudness has frequency 
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dependence while pitch perception also depends on the intensity levels, which may cause 

misinterpretation of mapped data features. To compensate for these effects, the sound 

attributes must be carefully chosen. 

One of the main challenges in sonification is finding the most efficient mapping 

of data parameters into sound attributes. However, currently there is no optimized 

approach and the sonification technique will depend to a great extent on the type and 

form of the data, individual perception and preference of sound, and the computational 

requirements. With this in mind, the current sonification scheme may not be optimum for 

every OCT dataset. Datasets and tissue types will have vastly different distinguishing 

parameters and a sonification system would need experimentation with different 

mappings, synthesis techniques and tuning of the parameters to customize it to the unique 

properties of the datasets employed.  
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CHAPTER 4 CONCLUSIONS AND FUTURE WORK 

4.1 Summary and conclusions 

This thesis describes a novel way to acquire and represent OCT data and images that may 

especially be useful in clinical and surgical applications of OCT. Conventional 

mechanical-scanning mechanisms due to their limited scan range and fixed scan 

geometry have limited use in a surgical setting while the sensor-based hand-held probes 

are somewhat inconvenient to use and have limited positional accuracy. In this thesis, a 

new cross-correlation based approach has been described which utilizes the structural and 

speckle information from the acquired A-scans to estimate the relative position of the 

probe. This algorithm may be used in manually scanned hand-held probes and needles for 

image formation. Several examples of image assembly using tissue phantoms and 

biological tissues were shown. However, in its current form, the technique has only been 

implemented for lateral manual-scanning. It is not fully automatic and requires user input 

to select an appropriate threshold and an area of interest to truncate the A-scans.  

In addition, a new way to represent OCT data in the form of audio signals has 

been described. This representation may complement the more traditional visual display 

and enable the user to utilize multi-sensory perception capabilities for interpretation of 

OCT data under real-time imaging conditions, such as during surgical procedures. An 

estimate of the tumor location may be gauged using audio feedback, and subsequent 

analysis of the image data from the suspected region using tissue classification algorithms 

has the potential to more precisely determine locations of tumor within tissues. 

Sonification is to be used as an extension rather than a replacement for the traditional 
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visual display. Such a multi-sensory approach has the potential to improve the real-time 

interpretation of data during high-speed OCT imaging. 

4.2 Future work 

In this section some of the potential future work and possible applications of the 

techniques developed in this thesis are described. 

4.2.1 Sensor-less manual-scanning 

4.2.1.1 A-scan assembly along the longitudinal direction 

Simulation results presented for A-scan assembly along the longitudinal direction need to 

be verified by taking actual experimental measurements from a forward-imaging device. 

The simulation results show that longitudinal A-scan assembly may not be trivial and 

may require prior assumptions about the object structure and properties. However, 

implementing more sophisticated correlation functions and exploring the extensive 

literature of time delay estimation techniques used in signal processing and 

communications may provide possible solutions. 

4.2.1.2 Combining the cross-correlation based approach with sensor-based tracking 

The cross-correlation based image acquisition technique can be combined with sensor- 

based positional tracking devices for more accurate image formation. These sensors can 

give the orientation and direction information during a scan, while the cross-correlation 

based approach can complement this information by deducing position at a much higher 

resolution than is possible with these devices. 
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4.2.1.3 Mosaicing 

Mosaicing can be used to image over a large field-of-view by using the images acquired 

from hand-held scanners. Numerous image Mosaicing or registration methods have been 

reported based on different techniques such as cross-correlations, mutual information etc. 

[16]. Adapting these techniques for OCT imaging can potentially provide a more robust 

and practical way of large field-of-view imaging. However, the intensive computation 

required and the lack of structural features in many OCT images will make the adaptation 

of these techniques for OCT image formation very challenging. 

4.2.2 Sonification 

4.2.2.1 Improvements in sonification system design   

Numerous investigations can be performed to improve the current method of sonification 

of OCT data. For example, more complex sound attributes such as vibrato and tremolo of 

the tones can be used. Additional sound dimensionality such as stereo, where different 

parameters could be mapped to the left and right ear, can be added to the current 

sonification. Experimentation with different mappings, and different variations in the 

scaling and polarity on the audio rendering can further improve performance.  Moreover, 

depending on the datasets employed, additional data parameters based on the histograms, 

A-scan peaks, standard deviation (for A-scan data) or textural parameters (for image-

data) can be incorporated for parameter-mapped sonification. 
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4.2.2.2 Human performance evaluation   

Performance of human subjects also needs to be evaluated in distinguishing between 

tissue types based on audio feedback, visual image feedback and a combined multi-

sensory feedback. For this evaluation, the present work needs to be expanded by 

incorporating more tissue data, including normal stroma tissue that is more optically 

similar to tumor tissue. 

4.2.2.3 Real-time implementation 

Sonification will be especially useful if done in conjunction with the acquisition of A-

scans in real-time. For real-time performance, the calculation of the parameters and the 

subsequent mapping into sound attributes must be done faster than the data acquisition 

rate. A parallel implementation of the scheme given in Figure 3.8 can be used for real-

time performance utilizing either commercially available sound synthesizers or using 

parallel programming techniques [81]. For real-time sonification, the data will either have 

to be downsampled or averaged. This may not be a problem as auditory feedback is 

intended to be a fast and efficient screening method for identification of important data 

features, which alert the user to suspicious areas of tissue.  For more detailed recognition 

and visualization, the user may look at the high resolution image on the screen. The speed 

of real-time sonification can be increased by decreasing the playback time of sound (100 

ms was used in the sonification examples in this thesis); however, it will decrease the 

resolution of the sonification, and clicks rather than sound tones will be heard.  



 

74 

 

 

4.2.2.4 Sonification of non-image data 

Many applications involve the use of forward sensing devices such as for the collection 

of low-coherence interferometry (LCI) data or refractive index measurements. 

Sonification of these types of data during image acquisition may be a more conducive 

and intuitive method of interpretation in real-time before subsequent analysis. 
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